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Abstract

This work concerns the development of a gridless method for modeling the inter-particle collisions of a gas. Conven-
tional fixed-grid algorithms are susceptible to grid-mismatch to the physical system, resulting in erroneous solutions. On
the contrary, a gridless algorithm can be used to simulate various physical systems without the need to perform grid-mesh
optimization. An octree algorithm provides the gridless character to a direct simulation Monte Carlo (DSMC) code by
automatically sorting nearest-neighbor gas particles into local clusters. Automatic clustering allows abstraction of the
DSMC algorithm from the physical system of the problem in question. This abstraction provides flexibility for domains
with complex geometries as well as a decreased code development time for a given physical problem. To evaluate the prac-
ticality of this code, the time required to perform the gridless overhead from the octree sort is investigated. This investi-
gation shows that the gridless method can indeed be practical and compete with other DSMC codes. To validate gridless
DSMC, results of several benchmark simulations are compared to results from a fixed-grid code. The benchmark simula-
tions include several Couette flows of differing Knudsen number, low-velocity flow past a thin plate, and two hypersonic
flows past embedded objects at a Mach number of 10. The results of this comparison to traditional DSMC are favorable.
This work is intended to become part of a larger gridless simulation tool for collisional plasmas. Corresponding work
includes a gridless field solver using an octree for the evaluation of long range electrostatic forces. We plan to merge
the two methods creating a gridless framework for simulating collisional-plasmas.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Simulations of gas systems have been useful for understanding many practical problems: space shuttle dam-
age, aerodynamics of craft, and so on. This paper describes a gridless procedure for handling collisions in a
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2008.04.038

* Corresponding author. Present address: Naval Research Laboratory, Optical Sciences Division, 4555 Overlook Ave. SW, Washington,
DC 20375, United States.

E-mail address: Spencer.E.Olson@umich.edu (S.E. Olson).
URL: http://www.umich.edu/~olsonse/ (S.E. Olson).

mailto:Spencer.E.Olson@umich.edu
http://www.umich.edu/~olsonse/


8036 S.E. Olson, A.J. Christlieb / Journal of Computational Physics 227 (2008) 8035–8064
direct simulation Monte Carlo (DSMC) calculation. This new method enables shortened development time for
studying a specific physical system. It also shows promise for increased accuracy for some very rarefied sys-
tems as well as systems with high-gradient flows without a heavy cost increase in computational resources
(time, processor power, memory, etc.) required. Following a brief context for simulating gas dynamics, the
method is described in detail by springboarding from a brief review of the more traditional and established
grid-based DSMC.

Under the assumption that inter-particle interactions in a gas are dominated by binary collisions, the evo-
lution of the gas can be accurately modeled by the Boltzmann equation, given by
of
ot

þ ½f ;H � ¼ Qðf ; f Þ ð1Þ
with initial condition
f ð~x;~p; 0Þ ¼f0ð~x;~pÞ: ð2Þ
f ð~x;~p; tÞ in Eq. (1) describes a phase-space distribution for the gas over all space and momentum
(~x 2 D � R3; ~p 2 R3) and H is Hamiltonian of the system. The operator Qð�; �Þis a convolution over all phase
space that accounts for departure from the Liouville theorem due to collisions between particles in the system
[1–3].

In general, gas systems are characterized by the ratio of the mean free path kMFP to the characteristic length
L of the system. kMFP is given by
kMFP ¼
1ffiffiffi

2
p

rTn
; ð3Þ
where rT is the total elastic scattering cross-section and n is the local number density. The local characteristic
length L of a system is the length scale over which a macroscopic property S of the gas, e.g. temperature or
density, undergoes significant change and can be expressed as
L ¼ S
oS
ox

� �� 1

: ð4Þ
The ratio (kMFP=L), called the local Knudsen number and denoted by Kn, is a measure of the collisionality of a
gas. The relative importance of the collision integral in Eq. (1) is directly tied to the value of Kn. As Kn tends to
� 1, action in the gas is dominated by collision events. For Kn � 1, the solutions of Eq. (1) can be approx-
imated as
fM ¼
nð~x; tÞ

N
p

2mkBT

� �3=2

exp �
j~p � ~p0ð~x; tÞj2

2mkBT ð~x; tÞ

( )
; ð5Þ
where fM is termed a local Maxwellian. In this limit, one can employ the Chapman–Enskog method to derive
transport equations for number density nð~x; tÞ, stream velocity ~p0ð~x; tÞ=m, and temperature T ð~x; tÞ[1]. Thus,
Kn serves as a guide for determining the most efficient approach for solving Eq. (1) for a gas system.

Fig. 1 shows the range of validity for different models of particle dynamics as a function of Kn. As indicated
in Fig. 1, there exists a cutoff region beyond which the fluid model does not extend. A wide range of important
physical systems fall outside the scope of fluid models in this higher range of Kn. Examples of high Kn systems
(Kn > 0:1) include (but are not limited to) comet tails [4], spacecraft reentry [5], spacecraft plume interactions
[6], micro-/nano-scale gas flows [7–9], evaporative cooling for the formation of Bose–Einstein Condensate
[10,11], and fundamental processes in plasma etching systems [12–14]. Often these systems are far too complex
to construct analytic solutions to the governing equation (Eq. (1)). Hence, theoretical studies of these systems
are mostly limited to numerical simulation and computation. Unfortunately, for most high Kn problems of
interest, directly solving Eq. (1) is not computationally tractable. This is because of the excessive computa-
tional resource requirement needed to describe and calculate the phase-space distribution function f ð~x;~p; tÞ.
For example, a six-dimensional f ð~x;~p; tÞover a spatial grid of 100 � 100 � 100 and a minimal momentum grid
of 30 � 30 � 30 requires J 100 GB of memory just for basic storage.
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Fig. 1. Validity regions for various gas simulation approaches. For very low Knudsen number Kn, fluid equations, such as the Navier–
Stokes equations are typically used. As Kn ! 0, the solutions of the fluid equations approach those of incompressible, inviscid solutions of
the Euler equations. For Kn J 0:1, statistical simulations are often used to model microscopic interactions. As Kn ! 1 , deterministic free-
molecular motion is the limit.
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A popular approach for reducing the computational requirement is to use a statistical method to evaluate at
least part of Eq. (1). The most common statistical method, pioneered by Bird [3], is direct simulation Monte
Carlo (DSMC). As implied by the name, DSMC involves a simulation of the macroscopic gas dynamics by
directly simulating the microscale processes of individual particles in the gas. Since the method is not a direct
discretization of the Boltzmann equation, questions of accuracy and convergence were initially addressed by
comparison with existing theory and experiments. Muntz [15] provides a nice review of computational valida-
tion of DSMC. Wagner [16] further validated the method by analytically establishing that DSMC converges to
the Boltzmann equation in the limit as N ! 1 . More recently, Hadjiconstantinou et al. [17] investigated sta-
tistical error associated with results drawn from DSMC and Gallis et al. [18] compared DSMC results with the
Chapman–Enskog formalization. A variety of review articles have been written on DSMC and its impact on
various fields of study [15,19–22].

While the individual motion of each gas particle is followed deterministically, the microscale binary colli-
sions in the gas are simulated in a statistical manner. To increase computational efficiency, the number of col-
lisions that must be tested and executed is limited by excluding the least likely of collision pairs (the collision
integral in Eq. (1) calls for collision interactions between all points in phase space that conserve energy and
momentum). Most-probable collision pairs are found by binning all particles in space to find groups of nearest
neighbors. Based on local flow properties, random pairs of particles from within a bin are selected to undergo
the collision procedure,
CDtð~xj;~pjÞ � ð~xk;~pkÞ ¼ ð~xj;~p
	
j Þ � ð~xk;~p

	
kÞ; ð6Þ
where CDt is the collision operator for a time step of Dt and ~p	 denotes a new momentum following the ex-
change due to the collision. The statistical collision operator CDt conserves momentum and energy and can
be elegantly described as a Markovian procedure based on a null collision operator (for details see [23]). Typ-
ically, particle bins consist of a fixed underlying mesh which represents a unique non-overlapping decompo-
sition of the domain D,
D ¼
[M
k¼1

ck; ð7Þ
where ck is the kth mesh cell. Although this mesh must cover all spatial regions of interest, its memory require-
ment is much less than that of the multidimensional phase-space distribution function f ð~x;~p; tÞ.

Despite the memory requirement being much reduced, a mesh that covers the entire domain D does not
allow for optimal use of computational resources. This can be the case, for example, when portions of the
mesh remain empty due to uneven distribution of particles throughout the mesh. In addition, a fixed grid
of bins must be customized to the particular physical problem in question. Grid-mismatch to the physical sys-
tem can be cause for error in simulation results. Conversely, a gridless method of determining local groupings
of nearest neighbors makes it possible to dynamically match the distribution of particles, independent of the
geometry of the boundary conditions or forces within the system.
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In this paper, we present a gridless statistical approach to the simulation of rarefied gas dynamics. Using
standard DSMC as a starting point, the gridless method is described and compared to mesh based methods.
Following a description of the methodology, we discuss convergence of the gridless method and thereafter
present results of benchmark simulations. The results obtained from gridless DSMC are compared with those
previously validated and obtained from standard fixed-grid DSMC. A method of including boundary condi-
tions is described and demonstrated.

2. Numerical approach

Each particle in a gas system can be characterized by its position and momentum at time t
fð~x1ðtÞ;~p1ðtÞÞ; . . . ; ð~xN ðtÞ;~pN ðtÞÞg; ð8Þ
where (~xið0Þ;~pið0Þ) are chosen by appropriately sampling Eq. (2). The N-particle distribution function at time t

may be expressed as
fdð~x;~p; tÞ ¼
1

N

XN

i¼1

dð~x � ~xiðtÞÞdð~p � ~piðtÞÞ: ð9Þ
In a direct simulation of microscopic gas dynamics, molecular motion and collisional processes must be cal-
culated. This involves following the position of each particle in the system and exchanging energy and momen-
tum between particles during collisions.

The basic tenet of DSMC allows separation of the collisional time scale from the time scale of the free
molecular motion. Such a separation decouples simulations of the different physical processes, allowing these
to be executed in an almost arbitrary order. It is thus possible to iterate a step-by-step algorithm, wherein each
step represents the simulation of a different physical process. A simple implementation of DSMC could
include a few steps as shown in Fig. 2. First, collisions are performed between neighbors according to a phys-
ical collision probability. Second, the particles are allowed free-molecular movement according to the system
Hamiltonian H. Last, boundary conditions are applied to particles as necessary. Repeated action of the split
operator leads to a particular instantiation of the discrete phase-space distribution function fdð~x;~p; tÞin Eq.
(9). To reduce statistical noise, many instances of fdð~x;~p; tÞare averaged together such that f ð~x;~p; tÞis given
by
f ð~x;~p; tÞ 
 hfdð~x;~p; tÞi ¼
1

J

XJ

j¼1

Z Z
fdjð~x;~p; tÞqð~xÞ/ð~pÞdx3 dp3; ð10Þ
where J is the number of independent instantiations of fdð~x;~p; tÞin the average and qð~xÞand /ð~pÞare suitable
test functions. In grid based DSMC, the underlying mesh may be thought of as the test function in construct-
ing the averages. For simulations of steady state behavior, the split operator is iterated until transients have
substantially decayed. Thereafter, J instances of fdð~x;~p; tÞ(separated by several iterations of the algorithm so
as to be statistically disconnected), are averaged together to compute limt!1 f ð~x;~p; tÞ. For time dependent
problems, the goal is to compute f ð~x;~p; tiÞwhere ti is the ith time step in the simulation. In this case, each
instance of fdjð~x;~p; tiÞ in Eq. (10) is taken from a separate simulation seeded with a new random sampling
of Eq. (2). Typically, the averaging in Eq. (10) is done by first projecting Eq. (9) onto a fixed underlying mesh
(3)  Apply Bound. Cond.

(2)  Move Particles

(1)  Collide Particles

Fig. 2. Simple implementation of DSMC.
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and then averaging the values in this mesh. In practice, one seeks macroscopic flow properties such as density,
stream velocity, and temperature. These properties are derived from moments of the computed f ð~x;~p; tÞ.

It must be noted that the de-coupling of the free molecular motion from collisional processes is only valid
for simulations where the probability of any particle colliding with another in any given time step is much
smaller than unity [24]. This is ensured by requiring that the basic time step of the simulation is no more than
10% of the collision time.

2.1. Collisions

Particle species for which long range interactions can be neglected only have a significant probability for
collisions with near neighbors. Thus, for implementing a collision model for such particles, it is valid (and
an efficient use of computational resources) to limit collision tests to pairs of particles that are separated by
less than or on the order of the collision length. In other words, it is unnecessary to calculate collision prob-
abilities for pairs of particles which are separated by a distance much greater than kMFP.

A typical approach for implementing efficient collision pair selection involves inserting a preparatory step
before step 1 in Fig. 2. During this preparatory step, all particles are sorted into bins that represent a particular
portion of the simulated space. Collision pairs are then created by selecting partners from within the same spa-
tial bin. This allows an efficient selection of probable collision pairs without the need to overextend the com-
putational resources.

Traditionally, a fixed grid of computer memory maps to a grid of simulation cells and provides natural bin-
ning for collecting and organizing the groups of nearest-neighbor particles. While this fixed-grid approach
enjoys much success, development of fixed grids often requires much finesse for creating the correct layout
of grid cells. For example, a system with steep gradients (due to strong external forces or sharp changes in flow
properties) such as at the front of a shock, a uniform grid is problematic: if the grid cells are too large, such that
the shock front is traversed by one or two cells, dramatic error in the collision statistics at the shock front will
result. On the other hand, if cells are too small, particles will be non-physically thermally isolated from each
other. In addition, a dense grid in a rarefied gas region will result in wasted computational resources. Ideally,
creating a physically correct simulation with a fixed grid involves an algorithm with the following steps.

(1) A fixed grid is created to best match the estimated solution.
(2) The simulation is executed until steady state is reached.
(3) The simulation results are compared with the geometry of the grid.
(4) If the stream lines of the flow field differ substantially from the geometry of the grid, the algorithm

returns to step 1 to repeat the process.

By iterating this algorithm, a correct grid would be found that produces the correct solutions to the physical
system. Adaptive mesh refinement is one method of automatically carrying out these steps [25,26].

2.2. Gridless DSMC

Rather than attempting to create physically correct simulations via the grid-refinement procedure, we have
implemented a gridless technique that avoids the issue of grid-mismatch. Without the need to match a grid to
an underlying physical system, the gridless approach further allows the abstraction of the DSMC code from
the description of the physical environment. In other words, the user is allowed to focus on the details of the
physical system (boundary conditions, forces, etc.) rather than the DSMC layer of the simulation.

The main disadvantage of a gridless system stems from the computational time required to sort particles into
nearest-neighbor lists. It is of utmost necessity to avoid algorithms where the required computational time increases
quadratically (or greater) with particle number, such as bubble sort which requires up to OðN 2Þtime. Various non-
gridded sorting algorithms have been available for some time, but only since the development and work with the
generalized binary sort/search algorithm (expanded to k dimensions) has a tractable solution been possible.

The general idea of the binary sort/search algorithm relies on the divide and conquer principle. Consider a
number secretly picked at random between two known fixed points on the number line. Consider further that
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we are given the task of discovering the number and can only ask ‘‘is it greater or less than” questions. The
binary search described that our first query use the center point between the two fixed points. If the answer is
‘‘less than,” we submit a second query for the value in the center of the section between the first query and the
end point on the left (assuming that the number line is less on the left). We iterate the queries always using the
center points of a smaller and smaller section of the number line. This search executes in Oðlog2½N �Þtime.

Instead of searching a previously sorted set of data, the task in DSMC is to sort a set of particles into near-
est neighbor containers. To perform this operation, we can continue to use the divide and conquer principle as
in the following example. Consider a one-dimensional set of random numbers for which we are given the task
to sort numerically. Using the divide and conquer principle, we first estimate the midpoint of the distribution
of the numbers. Using this estimated midpoint we compare all numbers to this selected value and put all ‘‘less-
than” numbers in a container on the left and all ‘‘greater-than” numbers in a container on the right. This mid-
point value, used to subdivide the group, is called the pivot point. For each of the newly created groups of
numbers, we define a new pivot point and subdivide each container further by the same process. By iterating
this algorithm, the set of initially random numbers is quickly ordered in OðN log½N �Þtime. This is known spe-
cifically as the quicksort algorithm.

By retaining the values of the pivot points and the relation of those pivots to the sorted data, a hierarchical
tree structure is generated that is optimal for the binary search described above. This tree is called a binary
search tree. The size, or depth, of the tree is characterized by the number of iterations required to build the
tree, or rather, the number of edges from leaf node to root in a graph view of the tree.

The quicksort and binary search algorithms can easily be extended to k dimensions by iterating the one
dimensional algorithms independently over each dimension for each level of the tree. Doing so, each new level
of tree results in creating 2k new children for each parent node, or ð2kÞl new total nodes for new tree depth of l.
The two and three dimensional specializations of this hierarchical tree method are known as the quadtree and
octree, respectively. In a quadtree, each parent node may have as many as four child nodes and in an octree,
the parent may have as many as eight child nodes. Because of the simple application of the binary search algo-
rithm to the tree, the quadtree and octree lend themselves well for performing searches for a set of objects in
two or three dimensions. This is the approach taken by many modern computer graphics systems for
determining which items, from a set of objects, to render [27]. Such a hierarchical organization is also
commonly used for simulated collision detection [28], especially in modern computer gaming systems.

Because our particle simulations are at most three-dimensional, we will henceforth refer to the algorithms
as the octree algorithm. By implementing the octree algorithm, we have developed a code that automatically
adjusts to the changes of the particle distribution in a simulation requiring OðN log½N �Þtime.

2.2.1. Octree for DSMC

For DSMC, it is necessary to add a series of specializations to the standard octree building process. First,
the choice of the pivot location can influence the statistical error and ability of the code to adapt to the phys-
ical system. Second, it is necessary to attach rules which disqualify children to avoid poor aspect ratio as well
as empty (and not useful) children. Third, it can be advantageous to allow the bounded volume of a node to
adapt more closely to the minimal bounding volume of the particles within its boundaries. Finally, the stop-
ping condition, or the condition that halts further subdivision in a tree can have a dramatic effect on the valid-
ity of the collision selection process. The remainder of Section 2.2 discusses these specializations in detail.

2.2.2. Pivot location

In a typical octree implementation, the clusters at each level of the tree are uniform cubes obtained by
bisecting the previous generation of clusters in each coordinate direction. In other words, the geometric center
of a parent node is used as the pivot point for the quicksort. Although this choice of pivot point requires near
zero computational time to calculate, DSMC can benefit by using an alternate scheme. In a gas simulation,
particles are randomly distributed according to the Boltzmann equation (Eq. (1)). The distribution may exhi-
bit large concentrations of particles in various regions of space as well as large empty spaces in other regions.
It is advantageous to select a pivot point, such as the center of mass, that more equally divides the particles
into children nodes. By doing so, the sort finishes in a shorter time and results in a shallower and more bal-
anced tree. This facilitates a shorter walk through the tree for later use. Furthermore, by ensuring that leaf
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nodes have roughly the same particle number, statistical noise that is common in DSMC due to large oscil-
lations in the cell occupancy rate should be minimized, though not eliminated. In addition, a more uniform
tree depth tends to keep the computational load spread evenly throughout the leaves of the tree. This is impor-
tant for vectorization or parallelization schemes which will be demonstrated in a follow-up paper.

2.2.3. Disqualification rules

While building the octree, it becomes necessary to disqualify new child nodes that may produce bad/incor-
rect collision statistics. The first disqualification rule is expressed by a minimum number of particles allowed
for a node: any child that contains fewer particles than the minimum is absorbed into its sibling created by the
same division process. This provides some element of adaptability of the octree to the local particle distribu-
tion. Fig. 3a shows a spiral set of particles that are divided by geometrically centered pivot points into a three
level tree that follows the first disqualification rule. Fig. 3b shows a further adaptation by shrinking the local
leaf-node volumes to the minimal containing volume. This adaptivity plays a key role in the gridless simula-
tion of charged particle transport, where long range interactions are approximated by a moment expansion
about the geometric center of tree nodes [29]. The choice of the minimum number of particles is discussed
below in Section 2.2.5.

A second disqualification rule pertains to the aspect ratio of particle clusters as described by the nodes of
the octree. For DSMC, it is important to avoid collision pairs that are so far apart that they have a minimal
probability of colliding. This non-locality problem is solved by avoiding large aspect ratios defined as
ARi ¼ maxf Di=Dj;Di=Dkg, i; j; k 2 f x; y; zg, and i 6¼ j 6¼ k, where Di is the size of the cluster in the ith direction.
To prevent poor aspect ratio ARi, a level of the tree is not divided in the ith direction if ARi exceeds 3=2. Fig. 4
shows a set of three types of decomposition using this rule of thumb to guard against nodes that fail to meet
this aspect ratio criterion. In each case, the contrived distribution of particles is sorted into a three-level quad-
tree. Fig. 4a shows a geometric division and Fig. 4b and c show a division about the center of mass.

2.2.4. Boundary shrinking

The differences between Fig. 4b and c pertain to the bounded volume of each node. For Fig. 4b, each new
child of the tree has its volume shrunken to minimally bound all its particles as was done for the geometric
division shown in Fig. 3b. Although this approach does adapt very well to an arbitrary distribution of parti-
cles, it can cause dramatic error in the collision rate for DSMC. This is because empty space will be incorrectly
ignored and the local density in each node will be calculated to be higher than the physical value. However,
level 2 of Fig. 4a and c point out that with no adaptive shrinking, it is possible to have a cluster where large
regions of the cluster have no particles, implying that the local Knudsen number will be artificially low.
Fig. 3. Examples of a quadtree structure divided using a geometric pivot point; (a) standard scheme, (b) scheme that adapts nodal volumes
to the local minimum bounding volume.
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We therefore arrive at Fig. 4c, which shows the approach used in our gridless DSMC implementation. In
this approach, clusters are shrunken if there is a large discrepancy between the defined volume of the cluster
and the actual volume of the contained particles. The amount of free space on each side of the node is con-
sidered independently. Before each test, the rectangular volume that minimally bounds the particles is mea-
sured, with ðDparticlesÞi being the length of this rectangle in the ith direction. If the length of empty space on
a given side is greater or equal to ðDparticlesÞi, then the edge of the node on that side is redefined to be the edge
of the particle distribution. It is found that this method can sometimes shrink the leaf nodes to be too small.
To avoid shrinking too much, it should be possible to apply the criterion to a parent node for deciding a
shrinking question of a child node.

2.2.5. DSMC validity and octree stopping conditions

The goal of DSMC is to obtain correct collision statistics so that a rarefied gas can be correctly modeled.
Using the octree to sort particles into nearest neighbor clusters, collision pairs are formed by randomly select-
ing partners from the same cluster. It is therefore critical to create final clusters of particles from which only
probable collisions can occur. For instance, if a cluster is too large, a randomly selected pair may be separated
by too great a distance to be considered for a probable collision event. We attempt to ensure the validity of the
collision selection process by engineering the size of the leaf node clusters such that only probable collision
pairs can be formed. Practically speaking, this translates into choosing a spatially dependent number of par-
ticles needed for an octree node. We now describe validity condition and how it translates into the minimum
number of particles per tree node.

In the following, let D represent the length scale of the cluster of particles from which collision pairs are
selected. The validity test for DSMC can be expressed as the ratio of D to the mean free path kMFP. Alexander
et al. [30] demonstrated how the error in DSMC results depends on the ratio (D=kMFP). Alexander et al. [30]
showed that for ðD=kMFPÞ � 1, error in the hard sphere viscosity and thermal conductivity can be as high as
7.5% and 4.5%, respectively. We therefore seek to keep all collision pairs separated by a fraction of kMFP,
depending on the error that we can tolerate.

For simplicity, we assume that particles in a particular collision cluster are uniformly distributed. If we
select the maximum allowed cluster scale size to be ð1=2ÞkMFP, the average separation between two collision
partners will be ð1=6ÞkMFP with a root mean square separation of � 0.204kMFP. This is easily demonstrated
by measuring the average and root mean square values of the difference between two random numbers that
are both less than 0.5. Using this choice, we express the validity condition as
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D
kMFP

K 1

2
: ð11Þ
Using Eq. (11), we can derive a target number of particles per collision cluster. Assuming a three dimensional
simulation, the approximate number of simulation particles in a cluster at position~x, denoted fð~xÞ, is given by
fð~xÞ ¼
1

F N
D3nð~xÞ; ð12Þ
where nð~xÞis the local number density of the gas and F N is the number of physical particles each simulated
particle represents. Using Eqs. (3), (11) and (12), we write
fð~xÞK
ffiffiffi
2

p

32F N r3
T n2ð~xÞ

: ð13Þ
In Eq. (13), fð~xÞrepresents the minimum number of particles that a cluster can have with a given local number
density nð~xÞand produce valid collision selections. For simulations in k dimensions, where (3 � k) dimensions
are ignored because of a symmetry, Eq. (13) is rewritten as
fð~xÞK 1

F N

ffiffiffi
2

p

4rT

 !k
1

nk� 1
ðkÞ ð~xÞ

; ð14Þ
where nðkÞ has inverse units of length to the kth power and is defined by
nðkÞ ¼ nð1uÞ3� k
;

where u is the basic length unit of the simulation (meters for S.I. units).
To apply Eq. (14) to building the octree, we define the octree stopping condition given as
N < 2fð~xÞ: ð15Þ
In other words, subdivision continues, until Eq. (15) becomes true. This has the effect of creating a nodal occu-
pancy rate of (1:5fð~xÞ). In our implementation, we allow the user to select a maximum and minimum value for
this stopping condition, such that the stopping condition becomes
N < 2

fmin; fð~xÞ6 fmin;

fð~xÞ; fmin < fð~xÞ< fmax;

fmax; fð~xÞP fmax:

8><
>: ð16Þ
In our simulations, we set fmin ¼ 4 so as to prevent unphysical thermal isolation. The use of fmin should be used
as a key warning signal for a simulation that does not contain enough particles to resolve the physical flow. An
example of this is demonstrated in Section 3.5.2. We also typically set fmax ¼ 100, but more investigation needs
to be made to determine the effect of high values of fmax.

2.2.6. Complex octree example

The advantage to a tree structure is that it gives grid-free localized refinement of space for a given instant in
time, providing a local set particles that are good candidates for collision partners. The tree structure adds
additional flexibility to traditional DSMC and removes issues associated with grid choice by automatically
adapting the refinement so as to give optimal local resolution. In Fig. 5, the finest level of the hierarchical tree
for hypersonic flow past a square cylinder is shown. The visualization of the clusters clearly shows how the
adaptivity of the tree is advantageous for flows that develop steep gradients in flow properties. The particular
flow related to Fig. 5 is discussed in Section 3.5.1.

2.3. Revised DSMC algorithm

As described in the introduction for Section 2, the DSMC algorithm allows a nearly arbitrary order of the
sort, collide, move, and boundary-condition steps. This allows us to optimize the order such that computa-
tional time is minimized and implementation is less complicated. An outline of our implementation of Gridless
DSMC is shown in Fig. 6. Each time step begins with the current population of particles sorted into an octree



Fig. 5. Visualization of the finest level of the octree used for computing hypersonic flow past a square cylinder in gridless DSMC.

(2)  Update Nodal Data

(1)  Sort into Octree (3)  Collide Particles

(5)  Apply Bound. Cond.

(4)  Move Particles

Fig. 6. Flow chart of our implementation of a gridless DSMC algorithm.
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that satisfies Eq. (16). After the sort is finished, macroscopic gas quantities (needed to obtain correct collision
statistics) are assigned to each of the leaves of the newly created octree. (The following section will detail our
method of performing this assignment in a gridless environment.) This is followed by the collision selection
and execution methods detailed in Section 2.3.2. Free particle movement then takes place, followed by the
application of boundary conditions.

2.3.1. Gridless maintenance of macroscopic quantities

In traditional DSMC, local macroscopic gas properties are needed to maintain correct collision rates. Many
of these macroscopic quantities tracked per grid cell are further time-averaged to reduce statistical noise. In a
gridless approach, there is no underlying structure to track and maintain such time-averaged macroscopic
quantities. We have therefore developed an adaptive method that tracks these quantities at the lowest levels
of the octree. Near the beginning of each time step (just after sorting), instantaneous quantities, such as njðtiÞ
and h~pi jðtiÞ, are measured per each jth octree node. To account for time averaging, a weighted average is taken
between the instantaneous data and an interpolation of the data from the previous time step, as indicated in
Fig. 7. After performing this update, the old tree is then discarded.

To perform the interpolation, any unstructured interpolation scheme will work, such as Shepherd’s algo-
rithm [31]. Unfortunately, performing unstructured interpolation is known to be very computationally inten-
sive. We solve this dilemma by accepting a method with an interpolant that does not pass exactly through the
data. Hernquist and Katz [32] developed such a method for use with octrees in a smoothed particle hydrody-
namics calculation.

This method is based on a spherical spline that computes a weighted average of the data in the octree to
create approximate values at points not located at the pivot points of the octree.

The kernel for the weighted average is given by
wðr; rIÞ ¼
1
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Fig. 7. Steps to update local gas properties using a gridless technique.
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where r is the distance from the data to the point of evaluation and rI is known as the radius of influence for
the respective data point. Evaluation of the kernel in Eq. (17) allows us to minimize the number of nodes used
to compute an approximate interpolated value. Using the binary search algorithm described in Section 2.2, we
find and use all nodes with a non-zero contribution to the weighted average. This speeds up the operation con-
siderably as compared to other unstructured interpolation routines.

The influence a particular node in the tree has on evaluations of Eq. (17) in its nearby vicinity depends on rI,
which is given by
Fig. 8.
interpo
used. R
radius
demon
very sm
rI ¼
3V min

4p

� �1=3

; ð18Þ
where V min is the smallest volume that includes a specified number of nodes, N I. rI is determined under the
assumption of local isotropy in the local distribution of octree nodes.

A demonstration of this technique is shown in Fig. 8, where the interpolation of coarsely sampled sinðxÞ=x
is performed. As shown in Fig. 8, if N I is chosen too small, the spline may too quickly tend to zero between
tree nodes, where non-null values might be expected. Conversely, by choosing N I too high, extrema in the data
to be interpolated may be artificially dampened. It is thus necessary to ensure that N I is neither too small nor
too large. Depending on the application, we have found reasonable values to be in the range 1 6 N I 6 10. For
the simulations in this paper, we found N I ¼ 4 to be a robust choice.

In terms of using this method in DSMC for tracking local gas properties, the effect is to both average in
time as well as in space. Though a more thorough study of this is needed, we believe this may further reduce
the typical DSMC noise. A more thorough study could include the comparison with simulations where algo-
rithms similar to Shepherd’s interpolation are used.
Spherical spline interpolation of a coarsely sampled sinðxÞ=x function. The diamonds indicate data points. Left: Comparing the
lated spline to the original set of data shows a reasonable interpolation. For visibility, a coarse sampling of the interpolant was
ight: A two-dimensional view of this interpolated spline highlights the radii of influence assigned to each of the data points. The
of influence is dynamically assigned such that a given number of nodes fit inside the spherical volume with that radius. For
stration purposes, the number of nodes within the volume of influence in this figure was limited to one. Thus, some data points with
all separation have a nearly invisible radius of influence.
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2.3.2. Collide particles

Within a tree-node, standard DSMC techniques are used for selecting collision pairs with an alteration only
in the number of collision pairs to test. G.A. Bird’s standard ‘‘no-time-counter” method [3] prescribes the
number of collision pairs to test N sel as
N sel ¼
1

2

F N NhN i DtðrTvrelÞmax

V
; ð19Þ
where F N is the number of physical particles each simulated particle represents, N is the number of simulated
particles in the cell, hN i is this number averaged over time, Dt is the time step of the simulation, V is the vol-
ume of the cell, and ðrTvrelÞmax is the maximum value in the particular cell of the product of the total scattering
cross-section rT and relative particle velocity vrel. The normalized probability of any given collision pair actu-
ally exchanging momentum is then given by
P coll ¼
ðrTvrelÞ

ðrTvrelÞmax

: ð20Þ
In our gridless algorithm, we replace some of the factors in Eqs. (19) and (20) with their space-time smoothed
equivalents, denoted as h� � � ix;t, from the gridless tracking scheme described in Section 2.3.1. Doing so, Eqs.
(19) and (20) become
N sel ¼
1

2
F N Nhni x;tDthðrTvrelÞmaxi x;t ð21Þ
and
P coll ¼
ðrTvrelÞ

hðrTvrelÞmaxi x;t

; ð22Þ
where hni x;t and hðrTvrelÞmaxi x;t are the space-time averages of number density n and ðrTvrelÞmax, respectively.

2.3.3. Move particles
Transport is handled via a method of characteristics for a time step Dt,
~xiðt þ DtÞ ¼~xiðtÞ þ
1

mi

Z tþ Dt

t

~piðsÞds; ð23Þ

~piðt þ DtÞ ¼~piðtÞ þ
Z tþ Dt

t

~Fið~xiðsÞ; sÞds: ð24Þ
The particular integrator that one uses to move the particles under free molecular motion depends on the
application. For instance, in a non-harmonic atomic trap it is often best to use a high accuracy method, such
as 5th–4th order adaptive Runge–Kutta. For the case when there are trivial external potentials, a simple leap-
frog or 2nd order Runge–Kutta routine is sufficient.

2.3.4. Apply boundary conditions

After moving the particles and before continuing with the next time step, it is necessary to apply boundary
conditions. To do this, we introduce the concept of boundary objects. A boundary object can be something as
simple as a reflective surface that has a bounded volume (for generality, the bounding volume of a boundary
object is allowed to be as large or small as possible). While moving the particles, we maintain and update the
maximum distance any one particle in a particular octree leaf has traveled, Dxmax ¼ ðjj~vjjDtÞmax. We expand the
bounding box by Dxmax on each side and test for resulting overlap with the bounded volume of the octree leaf,
as depicted in Fig. 9. The associated boundary condition for the overlapping boundary objects is then tested
and applied to all relevant particles within the leaf. This method is briefly discussed in Section 3 with an exam-
ple application.

For each new geometrical type of boundary condition, a new boundary object must be coded. To stream-
line the application of complex physical boundaries, an approach more similar in nature to graphics display
code might be helpful: large complex surfaces are often reduced into simple constituents.
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Fig. 9. Schematic of boundary object collision test for applying boundary conditions. The side lengths of bounding boxes of all
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2.4. Operator splitting of Eq. (1)

As pointed out earlier, DSMC typically involves operator splitting into two distinct phases: transport and
collisions. The transport step is purely deterministic and, for some external forces, can be solved analytically.
The collisional step is handled via a Monte Carlo sampling procedure, where two nearby test particles are
selected at random and allowed to collide. For the following, let the transport operator for a time step of
Dt be denoted by SDt and the collision operator be denoted by CDt. The original approach proposed by Bird
[3] is an Euler splitting, whereby, in l time steps, the system will evolve as
f ð~x;~p; t þ lDtÞ ¼ ðSDtCDtÞ
lf ð~x;~p; tÞ: ð25Þ
Wagner [16] showed that this approach converges to a solution of the Boltzmann equation as N ! 1 . Rjasa-
now and Wagner [23] further investigated the effect of the type of operator splitting used: Euler (SDtCDt),
Strang (CDt=2SDtCDt=2), and non-split methods. Rjasanow and Wagner [23] found that non-split methods con-
verge faster and that the convergence for Strang splitting is almost as fast as non-split schema. The results in
this paper were computed using Euler splitting. Future work will investigate the Strang type splitting in con-
text of the gridless DSMC algorithm.

3. Results

To verify the validity of this numerical approach, we demonstrate some standard DSMC simulation tests.
We begin this section with a demonstration of the convergence properties of gridless DSMC. Next we discuss
the speed of the algorithm and give timing results for the major bottlenecks. To show the accuracy of the algo-
rithm, we further present the results from several different simulations. The first set of results pertain to low
density gradient flows including a series of standard benchmark simulations of Couette flow and a simple test
of drag from low-velocity (Ma � 0:13) flow past a flat plate. The second set of results are from two simulations
of hypersonic flow (Ma � 10) where density gradients are large and the gridless method stands most to prove
its utility.

For both sets of simulations, boundary conditions consist of specularly and diffusely reflecting surfaces. For
diffusely reflecting surfaces which are held at a given temperature, incident particles are re-emitted in an effu-
sive manner with a velocity given by a random sampling of the thermal distribution of the surface. In some
cases, the walls are also given a shear velocity component (parallel to the surface) which causes the incident
particles to be re-emitted in a reference frame moving at the velocity of the wall. For specular surfaces,
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incident particles are reflected such that energy is conserved and the momentum component transverse to the
surface is reversed.

3.1. Convergence

The major advantage to using DSMC versus a direct solution of the Boltzmann equation (Eq. (1)) is to
lessen the amount of computational resources needed. As previously discussed, a single iteration of the DSMC
algorithm is clearly less computational demanding than a single iteration of a finite difference method that
might be used to solve Eq. (1) directly. It thus becomes important to determine the convergence properties
of the seemingly less demanding algorithm. (In other words, if DSMC requires near infinite time to converge,
we have gained nothing.) In this section, we discuss convergence of our DSMC implementation. Convergence
in terms of the central limit theorem (CLT) will be described first. Convergence tests are shown for a Couette
flow similar to Section 3.3.2. To demonstrate the CLT in our DSMC implementation, we also show the results
of a simulation for a uniform three-dimensional gas in a periodic box.

At least two forms of a central limit theorem (CLT) apply to the DSMC algorithm. The first is the standard
CLT which states that the mean of a sample of random variables of a particular distribution becomes more
normally distributed as the number of random samples increases. In accordance with the Berry–Esséen theo-
rem, convergence goes as
eZ / 1=
ffiffiffi
Z

p
; ð26Þ
where Z is the number of random samples and eZ is the error. This convergence law pertains to the value of J

(number of samples taken) for computing the final form of f ð~x;~p; tÞin Eq. (10). In addition, it is evident in Eq.
(9) that such a CLT applies to the value of N (number of representative particles in the system). To verify the
standard CLT for N, we first examine a refinement study with respect to N for the Couette flow described in
Section 3.3.2. The size of the representative particles, F N , is varied such that the physical number density re-
mains constant throughout the refinement study. The right panel of Fig. 10 shows a waterfall plot of the tem-
perature profile in the Couette flow as a function of N. Each curve of the waterfall plot represents the average
of J ¼ 5400 samples and is displaced vertically by 5 K from the neighboring curves. As N increases, the mea-
sured momentum distribution becomes more thermal and the associated effective temperature profiles become
more smooth across the channel. The bottom panel of Fig. 10 depicts, as a function of N, the average error of
a particular run to the apparent limiting solution (taken from smoothed results of the simulation with
N ¼ 5 � 105). This plot shows that the convergence goes as � 1=N 0:6. It should be noted that for the simula-
tions presented in this paper, J was chosen large enough such that eN 
 eJ .

We assert that an additional, non-standard form of the CLT applies to the thermalization of a discrete gas
and is related to the number of collisions within the gas. For simplicity, consider first a homogeneous gas with
a particular momentum distribution f ð~pÞ. For such a gas, Wild [33] showed that it is possible to solve Eq. (1)
via an iterative process. Each iteration takes into account more and more of the collision history of the gas and
the resulting form of f ð~x;~p; tÞis called the Wild expansion. For Maxwellian molecules, the Wild Expansion
takes on a simplified form, the first three iterations of which are given by
f1ðtÞ ¼e� tf0;

f2ðtÞ ¼f1ðtÞ þ e� tð1 � e� tÞQðf0; f0Þ;

f3ðtÞ ¼f2ðtÞ þ e� tð1 � e� tÞ2 � ½Qðf0;Qðf0; f0ÞÞ þQðQðf0; f0Þ; f0Þ�=2;

ð27Þ
where it has been established that limn!1 fnðtÞ ¼f ðtÞ[33]. The iteration number n of the expansion is related to
the number of collisions the system has undergone by time t, as evidenced by the depth of the nested collision
operator Qð�; �Þ. For example, terms in Eq. (27) such as Qðf0;Qðf0; f0ÞÞdescribe particles that undergo colli-
sions with particles that have already collided once. It is worth noting that the Wild expansion has been used
as a time accelerant in standard DSMC by tracking the probability of multiple binary collisions per particle
[34,35].

Carlen et al. [36] determined a convergence rate for the expansion in Eq. (27) and showed that a CLT
applies, such that the convergence of fnðtÞ to the true solution f ðtÞ is exponential in n. As a corollary to
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the CLT for truncation of the Wild expansion, Carlen et al. [36] further showed that a CLT applies to f ðtÞ(the
true solution of Eq. (1)) such that f ðtÞconverges to a Maxwellian exponentially in time. In other words, an
initially non-thermal distribution function f ð~x;~p; tÞwill thermalize in exponential time. In this context, time is
typically measured in units of the collision time.

We expect that the discrete system hfdð~x;~p; tÞi will exhibit similar behavior. It is easy to see that a given
fdj ð~x;~p; tÞof the discrete particle system maps onto parts of fnð~x;~p; tÞand one might expect that hfdð~x;~p; tÞi
provides a fairly complete coverage of fnð~x;~p; tÞ. Hence we expect exponentially fast convergence of
hfdð~x;~p; tÞi to a Maxwellian where the final error is subject to Eq. (26) for N. As a demonstration of this,
we consider a homogeneous three-dimensional gas placed in a cubic volume (1 m3) with periodic boundary
conditions in all three dimensions. The simulated domain is filled with Ar such that Kn ¼ 0:1,
kMFP ¼ 0:1 m, and the time step is constrained to be K 0:1T coll, where T coll is the mean time between colli-
sions. The initial spatial distribution is uniform and the initial momentum distribution f ð~pÞis given by
f ð~pÞ ¼
Y

i

fðpiÞ; i 2 x; y; z; ð28Þ
where
fðpiÞ /

0; pi 6 pmin;

2
ffiffiffiffiffiffiffiffi
b=p

p
; pmin < pi 6 0;

exp½�bðpi � p0Þ
2�; 0 < pi:

8><
>: ð29Þ
b ¼ ð2MkBT Þ� 1, and (p0=M) is the drift velocity.
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As the non-thermal gas begins to evolve, collisions between particles cause momentum exchange and f ð~pÞis
altered through the process, as shown in the left panel of Fig. 11. Each subsequent evolution of f ð~pÞthrough a
time span of length T coll might be represented by a subsequent iteration of the Wild expansion. As in Eq. (27)
as n increases, a larger collision history accrues and one would expect that f ð~pÞeffectively becomes the result
of a nested convolution of the initial condition in Eq. (29). Thus, following a CLT, f ð~pÞbecomes more nor-
mally distributed until a thermal system is achieved as depicted by the bottom curve in the left panel of Fig. 11.

The right panel of Fig. 11 shows the deviation of f ð~pÞfrom a Gaussian as a function of the average number
of collisions per particle, denoted by N coll. In accordance with the expected convergence rate, the deviation
does indeed decrease at an exponential rate until the statistical fluctuation eN becomes dominant. Further,
the right panel of Fig. 11 shows that eN goes as Eq. (26) as dictated by the standard CLT. As shown, an
increase of N by four times leads to a decrease in the final error by a factor of 2.

3.2. Computational time issues

For large DSMC simulations, the computational time required for an iteration of the algorithm is of
utmost importance. Because the physical system is simulated by paying attention to the microscale interac-
tions, memory as well as CPU resources are taxed very heavily. Time step iterations on the order of 1 ls
per simulation particle are considered to run at average speed, while fast codes, all of which are optimized
grid-based systems, have been known to need as little as � 0.5 ls (on comparable hardware) per particle.1

While we do not anticipate creating a gridless methodology that is faster than gridded DSMC with the fast-
est integer based (hash) sorting algorithms, we seek to show that any performance degradation relative to the
typical speeds is not too prohibitive. We therefore analyze the major components in our implementation to
help validate this method as being reasonably useful. The timing results shown in this section were produced
on an AMD Athlon 64 X2 4800+ processor (2.4 GHz). Fig. 12 shows the time required to compute each com-
ponent of the algorithm for a simple three-dimensional periodic box. Timings for the move and collision por-
tions of the algorithm are combined because, although they still stand to undergo significant optimization in
our implementation, the basic differences between these and those of a gridded DSMC implementation are
very small. Fig. 12 clearly shows that the primary bottleneck in gridless DSMC, as it stands, is the octree sort-
ing. We are aware of several aspects in our code that can undergo significant optimization. In spite of this, we
do not expect the general trend exhibited Fig. 12, nor the conclusion that the octree sort is responsible for the
major time sink, to change.

As the most time-intensive portion of our code occurs within the octree sorting algorithm, we further dis-
cuss the execution time required to sort. Theoretically, because we use a quick sort, this sorting time should go
1 Private communication with I.D. Boyd (2005).
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as OðN logðNÞÞ. As described in Section 2.2, the sorting algorithm can be augmented to be optimal for a par-
ticular calculation. For DSMC, we augment the algorithm to divide by the center of mass. Because of the
additional time required to calculate the center of mass, it is expected that this augmentation causes an addi-
tional computational load. To analyze the severity of this additional load, we compare three different types of
octree sort. The first method we name the Center method. This is the most standard division routine for the
octree, where a node divides into children based on the geometrical center of the node. Because of this type of
division, each of the child nodes are of the same shape and size. This represents the least expected computa-
tional load as is verified in Fig. 13, which shows the time-to-sort per particle as a function of increasing total
particles.

The second method we name the CM method, or center-of-mass method. In this case, an octree node is
divided into children with each of the axes of the division passing through the center of mass of the node.
As shown in Fig. 13, the CM method is slower than the Center method. This is because the center of mass
of each node must be computed before subdividing the node.

The third method we name the CM-Shrink method. Similar to the CM method, subdivisions are performed
about the center of mass of the parent node. The difference is that the volume of each of the newly created
children are shrunken to only bound the particles within this box. Though using the CM-Shrink method
for DSMC would result in high collision rates (because the density would be over estimated), this type of sub-
division will be useful for integration with plasma codes. This is the slowest of the three methods as shown in
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Fig. 13. Time to sort per particle (ssort) as a function of number of particles in the system N. The three volume defining methods shown
only differ by a component linear in N. For DSMC calculations, where local density should not be over-estimated if we are to obtain
correct collision rates, the most appropriate volume defining techniques are either the CM or center division methods. The CM-Shrink
routine would be useful for plasma simulations.
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Fig. 13, since, in addition to measuring the center of mass, the bounding volume must also be measured,
although this represents only a slight increase in computational load per particle over the CM method.

It can be seen from Fig. 13 that though the performance of the three methods varies, the difference between
them is not too great. In addition, the execution time of this sort is on the order of 1 ls, or less than an order of
magnitude slower than optimized fixed-grid DSMC. We conclude therefore, that this gridless method is a via-
ble DSMC method with respect to sort time.

3.3. Couette flow

A classic test to help validate a DSMC code is that of a Couette flow. A Couette system is described by two
parallel, diffusely (i.e. non-specular) reflecting plates, each at some specified temperature and transverse veloc-
ity, as depicted in Fig. 14. The dynamics of one-, two-, or three-dimensional gas between the plates are allowed
to approach steady state. For the two following Couette-flow tests, the simulations were run as a function of Kn.

3.3.1. Thermal diffusion

In the first Couette-flow test, a uniformly distributed one-dimensional sample of Ar gas, initially at rest and
at 273 K, is placed between two stationary plates held at 173 and 373 K, respectively. The system is then
allowed to evolve until steady state is reached. For each of these simulations, the number of simulation par-
ticles was kept constant at N ¼ 104. Many samples were averaged together to reduce the statistical noise in the
presented results. For the fixed grid data, 1 � 105 samples were used [37], whereas for the gridless data, 2 � 104

to 7 � 104 samples were used, depending on the value of Kn.
Profiles of the steady-state temperature across the channel for various orders of Kn are shown in Fig. 15.

We find very good agreement with the results from the fixed grid simulation, which are also shown in Fig. 15,
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Fig. 14. Setup for Couette flow simulations. The channel between the two plates is initially filled with a uniform distribution of simulated
Ar gas at 273 K.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

-0.4 -0.2  0  0.2  0.4

T
em

pe
ra

tu
re

 (
K

)

Position in Channel (m)

Gridless
Fixed Grid

0.01

0.1

1

10

100

Fig. 15. Temperature profile across a channel in a thermal Couette flow simulation. The left and right walls are held at 173 and 373 K,
respectively. The particles are initially uniformly distributed between the two plates with zero average velocity. The results for Knudsen
numbers of 0.01, 0.1, 1, 10, and 100 are compared to similar results from a fixed grid approach. (Fixed grid data as published in [37] used
with permission.) Fixed grid data courtesy of Dr. Quanhua Sun [37].



S.E. Olson, A.J. Christlieb / Journal of Computational Physics 227 (2008) 8035–8064 8053
for Kn 6 10. For the very rarefied case with Kn ¼ 100, we find that the gridless technique appears to produce
results closer to the free molecular flow regime than does the fixed grid system. As discussed below, we believe
this may be an indication that the gridless method actually performs better than the fixed grid system for very
rarefied gases.

3.3.2. Velocity diffusion

In the second Couette-flow test, the two parallel plates indicated in Fig. 14 are held at a temperature of
273 K, but given anti-parallel velocities (transverse to the channel where the gas resides) of
~v1 ¼ � 150 m=s ŷ and ~v2 ¼ 150 m=s ŷ. Initial conditions as well as averaging procedures for this simulation
coincided with those of the first Couette-flow test.

Temperature profiles of this simulation are compared to similar fixed-grid results in Fig. 16 and velocity
profiles are likewise compared in Fig. 17. From each of these two figures, we can see a very good agreement
with the fixed grid data for the higher density cases. Similar to the thermal Couette flow, there is a slight dis-
agreement in the low to very rarefied cases (Kn ¼ 10 and Kn ¼ 100). Looking at a closeup of the temperature
profiles in these low density cases, shown in Fig. 18, there appears to be slightly more curvature in the gridless
results than in the fixed-grid results. This appears to be the case even for a much lower number of averages in
the gridless case (� 5 � 104 for Kn ¼ 10).

The differences between the sets of results of these two Couette-flow tests cannot be easily attributed to sys-
tematic error in the gridless approach. This is because for one case, the simulation appears to be slightly more
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collisional (the case of velocity diffusion where curvature in the temperature profiles is seen), while for the
other case the gridless simulation appears to be slightly less collisional (the case of thermal diffusion where
the results more closely resemble a free molecular flow). In spite of these initial findings, a refinement study
is needed to determine the relative performance of the fixed-grid to a gridless system for the very rarefied case.
More alignment in the timing of sampling for averages between the two methods will need to take place.

3.4. Low-velocity flow past a thin plate

We also demonstrate simulations of low-velocity (Ma � 0:13) flow past a thin, flat plate. As depicted in
Fig. 19, a thin, diffusely reflecting plate is placed within a stream of Ar gas at T ¼ 273 K and at an angle h
with respect to the stream velocity~v0 ¼ 40 m=s x̂. In this paper we present the results for h ¼ 0 and compute
drag coefficient CD of the plate. We compare CD to values computed by various grid-based calculations,
including a set of comparative calculations from Ref. [8] and a DSMC code implemented by G. A. Bird called
DS2V [38] which has the option of adapting its mesh after each run for subsequent runs. Ref. [8] presents a
comparison of CD as calculated by three different means: traditional DSMC, DSMC with information pres-
ervation (IP-DSMC), and a non-statistical model known as the transition probability matrix model (TPM).

A thin plate of length L is placed centered at the lower boundary of a simulation domain of size 6L � 6L.
The boundary wherein the plate is embedded is treated as a specular reflecting surface. This mirrors the phys-
ics of the simulation into a virtual domain below the plate and allows us to properly simulate the infinitesi-
mally thin plate completely surrounded by Ar gas. The boundary opposite of the plate is set to be diffusely
reflecting with a velocity equal to ~v0 such that it emulates a completely thermalized and uniform section of
the Ar stream above the simulation domain. With ~v0 parallel to the top and bottom boundaries, atoms are
injected and removed from the left and right boundaries at a rate that sustains the thermal stream of Ar
gas. We should note that because of technical details, the flat plate in the DS2V calculation is placed in the
center of the computational domain with specularly reflecting walls parallel to the stream velocity.
Fig. 19. A 2D flow past a thin plate using gridless DSMC.
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For this simulation L ¼ 0:5 m; Kn ¼ 0:1, and hN i t ¼ 5 � 105 where each particle represented
F N ¼ 4:66 � 1014 Ar atoms. With the domain initially filled, the simulation was allowed to run to steady state,
after which 1 � 105 samples of fdð~x;~p; tÞ, each separated by � 6:8Dt, were averaged together as in Eq. (10).
Fig. 20 shows contour plots of the number density and velocity components of the flow past the thin plate.

To compare the results of this simulation to those produced by various grid-based calculations, we compute
the drag coefficient of the thin plate. The drag coefficient CD is given by
Fig. 2
j~v0j ¼
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where ~F is the force on the plate due to collisions with the gas, A is the area of the plate, and M is the molec-
ular mass of the gas. For the system with results shown in Fig. 20, A ¼ 0:5 m2;~F �~v0=v0 ¼ 1:44 mN, M is the
atomic mass of Ar ð39:948 amuÞ; n ¼ 2:6 � 1019 m� 3, and~v0 ¼ 40 m=s x̂. This corresponds to CD ¼ 2:1. Table
1 shows CD for 0:05 6 Kn 6 10 for gridless DSMC and all the previously mentioned grid-based calculations.
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As shown in Table 1, the gridless CD compares relatively well with the values from the grid-based calcula-
tions for most of the range of Kn. However, as Kn increases, a difference arises between the gridless value and
those from the other DSMC calculations, including DSMC of Ref. [8], DS2V DSMC, and IP-DSMC. We per-
formed a variety of tests to discover where the discrepancy between these calculations may lie. These tests
included a refinement study in total number of simulated particles, changing the boundary conditions such
that both walls parallel to the flow were specularly reflecting, and increasing the boundaries of the computa-
tional domain up to two-fold for both the gridless and DS2V cases.

The first two tests were primarily conducted using the gridless code. For the first test, particle number
refinement, we noticed very little change in the computed value of CD over a range of 1 � 105 to 1 � 106 par-
ticles with a spread in values of less than 1%. For the second test, we changed the boundary condition in the
gridless simulation for the wall opposite the thin plate to specularly reflecting, as was done in the DS2V case.
Similar to the particle number refinement, we saw very little change in the computed value of CD.

For the third test, we increased the size of the domains in both the DS2V and gridless codes. With the grid-
less code, we noticed no clear changes in CD even for a domain as large as 6L � 12L, with the largest distance
in the transverse direction. With DS2V, we did notice a general decrease in CD as the domain size increased.
For Kn ¼ 10, the value decreased from CD ¼ 4:8 with a domain size of 6L � 6L to CD ¼ 4:6 with a domain size
of 6L � 12L, again with the largest distance in the transverse direction.

During this series of tests, we made two other key observations concerning the differing computed values of
CD. First, we noticed a difference between the drag computed by DS2V before and after adaptive mesh refine-
ment. In each of the rows for the DS2V results, at least one iteration of adaptive mesh refinement occurred.
We noticed a decrease in CD after refinement for two values of Kn: CD ¼ 2:5 ! 2:3 for Kn ¼ 0:1,
CD ¼ 3:4 ! 3:0 for Kn ¼ 0:2, but little increase in CD for Kn ¼ 10. The pre-adapted values of CD for
Kn ¼ 0:8 and 1.2 were not recorded.

We also noticed that there was a difference between how the averaged value of CD changed as more and
more samples were accumulated. For gridless DSMC, the average value did not change significantly after
the first 100 samples, although the statistical noise of the value became much reduced. For DS2V on the other
hand, we noticed that the value tended to increase as more and more samples were taken. For example, for
Kn ¼ 10 at sample number 400, CD, as computed by DS2V, was 4.4 and steadily increased over the next
500 samples after which it remained at 4.6. We conclude that there are likely many factors that affect the com-
puted value of CD and that these additive effects become more prominent for large values of Kn.

3.5. Hypersonic flow

To further demonstrate the utility of gridless DSMC, we turn to hypersonic flows. As objects travel through
a medium at hypersonic speeds, a shockwave follows the disturbance wherein density, temperature, and veloc-
ity gradients are large. To simulate such a flow accurately, a DSMC code must take into account the density
variations when selecting pairs of particles for collisions. As discussed in Section 2.2.5, the selection process
must ensure that collision partners are not separated by a distance larger than a fraction of the mean free path
kMFP. For flows with large density gradients, this translates into large variations in the scale size D of the clus-
ters from which collision pairs are taken. This represents the most intensive mesh refinement needed for grid-
based DSMC and the case which stands to benefit most from a gridless routine such as presented here.

We present two simulations of flow of Ar gas around rectangular and non-rectangular objects. For both
simulations, the undisturbed stream velocity is set to � 3000 m=s. With an input temperature of 273 K, this
corresponds to a Mach number of Ma ¼ 10. Simulation results using the gridless DSMC are compared to
those of a standard gridded DSMC as implemented by G. A. Bird’s DS2V program [38]. The DS2V code
has also been subject to validation tests of hypersonic flow and comparison with other codes [39].

3.5.1. Flow past a square cylinder

Our first hypersonic flow consists of a 0:5 m wide square cylinder embedded in the flow of Ar moving at a
speed of � 3043 m/s with a stream number density equal to 2:6 � 1019 m3. This corresponds to a Knudsen
number of Kn ¼ 0:1. The computational domain is set to be 8 m wide (in the direction transverse to the flow
velocity) and 3 m long with the embedded square cylinder at the center of the domain.
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The simulations begin with an empty computational domain which fills until steady state is reached. After
steady state is reached, a series of samples are taken and averaged together to produce the final results. The
results in this section represent an average of 4200 samples for gridless DSMC which used 2:3 � 106 particles
(on average) and 4239 samples for the DS2V case which used 1:4 � 106 particles (on average). The DS2V sim-
ulation underwent one iteration of adaptive mesh refinement. To compare the results of the two simulations,
we examine contour profiles of the number density, Mach number, and temperature. For clarity, only a subset
of the computational domain is shown such that the bow shock developed by the embedded object is most
visible.

The results of these two simulations show little difference in the density and Mach number profiles as shown
in Figs. 21 and 22. Some differences between the quality of the plots (i.e. apparent noisiness of the data) may
be most likely attributed to differences in the sampling routines. Also qualitative, the gridless DSMC method
appears to demonstrate exceptional symmetry in the results. The most significant differences between the
results, albeit also relatively minor, can be seen in the profiles of the Ar temperature (see Fig. 23) behind
the object in the flow direction. It is possible that these minor differences are also the result of the different
sampling routines in the test cases.
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Fig. 21. Number density for hypersonic flow past a square cylinder. Left: gridless DSMC. Right: DS2V.
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Fig. 22. Mach number for hypersonic flow past a square cylinder. Left: gridless DSMC. Right: DS2V.
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As discussed in Section 2.2.5, the collision selection system must ensure that collision partners are separated
by only a fraction of the mean free path kMFP. In gridless DSMC, we do this by engineering the size of the
octree leaf-node, or dynamic collision cell, according to kMFP. We attempt to achieve a flat profile in the
leaf-node scale size D to kMFP ratio with a maximum value given by ðD=kMFPÞK 0:5. In the left panel of
Fig. 24, we show the mean value of this ratio for the hypersonic flow past a square cylinder. As can be seen
in the figure, the profile is relatively flat throughout the simulation domain, even across the bow shock in the
flow. This demonstrates two key aspects of the gridless technique described in this paper. First, the leaf nodes
can be made uniformly small enough to ensure that only probable collisions occur, and second, the leaf nodes
can be made to be no smaller than necessary. This second key point is important to ensure that the simulation
does not force an unphysical thermal isolation.

The right panel of Fig. 24 shows the validity condition reported by the DS2V program to the user. For flat-
ness comparison, the data in the right panel were normalized to twice their average value. DS2V retains infor-
mation per grid cell about the ratio of the average separation of collision partners to kMFP and warns the user
as this value approaches unity or greater. Although Fig. 24 shows that this validity condition is routinely met
in the results of the DS2V version of this simulation, Fig. 24 also shows the lack of uniformity of the condi-
tion. Barring further mesh refinement, it is possible that the cell sizes become smaller than necessary and begin
thermally isolating particles in the stream.

It should be noted that the difference in smoothness of the two profiles in Fig. 24 is expected. The DS2V
data in the right panel result from averaging over many collisions through simulation time whereas the gridless
DSMC validity metric in the left panel represents an instantaneous state of the generated octree at a given time
in the simulation.

3.5.2. Flow past a double-flare

Our second hypersonic flow resembles a set of simulations and experiments of flow past a biconic cylinder
as described in Refs. [39–43]. A representative half cross-section of the biconic body is shown in Fig. 25. The
biconic cylinder, placed in a hypersonic flow condition, creates sharp bow shock that exhibits very large
Fig. 24. Validity metric for DSMC. Left (gridless): ratio of the scale size of the leaf nodes of the tree to the mean free path (D=kMFP). Right
(DS2V): ratio of mean collision separation to kMFP renormalized for visualization to twice the average value (2 � 0:04).
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density, velocity, and temperature gradients. The work represented in Refs. [39–43] compares various axially
symmetric simulations of the flow to a set of experimental data.

Because our code is not currently set up to work in an axi-symmetric geometry, we instead simulate a
hypersonic flow in two dimensions around an object of similar cross-section. Although we cannot compare
with experimental results as is done in Refs. [39–43], we compare the results from gridless DSMC to those
of the DS2V program as done in the previous section. We note that DS2V was used in Ref. [39] to simulate
flow past the double cone and compared well with both experimental data and previous simulation results.

The geometry of the double flare object in the simulations presented in this section is as shown in Fig. 25.
The undisturbed stream velocity and number density are 3000 m=s and 2:6 � 1021 m� 3, respectively. The com-
putational domain is set to be 20 cm along the direction of the flow velocity and 25 cm in the transverse direc-
tion. The object is embedded into the center of a specularly reflecting wall parallel to the stream velocity.

Similar to the simulations of flow past the square cylinder, the simulations begin with an empty computa-
tional domain which fills until steady state is reached. The simulations are allowed to reach steady state, after
which a series of samples are taken to form the final result. For the gridless DSMC case, the results represent
2 � 104 samples averaged together with 2:6 � 106 particles in the simulation. The DS2V simulation underwent
one iteration of adaptive mesh refinement and its results are an average of 21779 samples with 1:6 � 106

particles.
To compare the results of the two simulations, we again examine contour profiles of the number density,

Mach number, and temperature. From Figs. 26–28 we see that the comparison is generally favorable,
although differences do appear in portions of the flow, especially behind the object.

The differences in this case are a slightly more pronounced than for the flow past a square cylinder as seen in
Figs. 26–28. In Fig. 26, for example, upper tip of the contour for 10 � 1021 m� 3 is slightly pulled further back
in the gridless case. For Mach number and temperature, the most significant differences occur behind the
object in the flow direction as seen in Figs. 27 and 28. Although sampling may play a small role for this com-
parison, to correctly place the blame for the mismatch, we must examine the validity factors for each of the
two simulations. In Fig. 29, we again show the validity metrics for each of the simulations, with the gridless
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Fig. 26. Number density for hypersonic flow past double flared object. Left: gridless DSMC. Right: DS2V.
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Figs. 30–32 show data from similar simulations that correctly resolve the flow using an order of magnitude
more particles. In this case, the number of particles in the DS2V and gridless cases was the same. The data
compare very well with a very few minor differences which are again most pronounced in the region behind
the object in the flow direction. To verify the validity of this pair of simulations, we examine the validity met-
rics for the two methods in Fig. 33. Similar to Fig. 24 of the square cylinder simulation, Fig. 33 indeed gives
evidence that there were enough particles to trust the collision statistics in the simulations. Also similar to the
square cylinder example, we see in Fig. 33 that the instantaneous gridless metric in the left panel is very flat
even through the steep density gradients of the shock front. The metric for the DS2V code on the other hand,
shows a variation especially at the shock front. This implies that grid cells may have, in fact, been made too
small, or at least are in danger of being made too small.

4. Conclusion

We have developed a gridless method for DSMC. The method makes use of a hierarchical tree structure for
determining collision partners in DSMC and a spherical spline interpolation for tracking local time averages
of gas properties at the tree nodes. Initial tests indicate that in 1 and 2 dimensions, the method is at least as
accurate as the traditional grid based approach. Further, it appears, that for a given accuracy, the gridless
approach requires fewer samples in the averaging process than does the grid based method. This may be a
result of the clustering method used or it could be attributed to the strong smoothing associated with spline
interpolation and it requires further exploration. In addition, the novel treatment of boundaries provides a
highly flexible tool, capable of handling flow past complex objects without needing to tune volumetric meshes.

We discuss the practicality of gridless DSMC with respect to computational resources (hardware and time).
While the lack of a fixed mesh allows a minimal memory footprint, a demonstration of the execution time of
the major components of the code shows that the primary bottleneck is in building the hierarchical octree.
From this demonstration, we see that the CPU time per particle in the current implementation is less than
an order of magnitude higher than the fastest grid based methods. Thus, we conclude that, based on timing
alone, gridless DSMC can be competitive with traditional fixed grid approaches. We expect that with optimi-
zation, the speed of our gridless DSMC algorithm may be further increased.

We see several key advantages to the gridless approach that justify the moderate sacrifice in computational
time. First, simulated particles are clustered based on local density. Thus, the nodal occupancy fluctuations
should be minimized and improved collision statistics will result. Second, the abstraction of the DSMC algo-
rithm from the physical system establishes an ease of use (i.e. simple reusability of code). Because of this ease
of use, simulation development can focus on the physics of the problem at hand. Third, the abstracted DSMC
layer can be wrapped inside an additional layer that forms the basis of a parallel computation scheme. This
outer layer would be primarily for managing particle exchange and load balancing issues between different
blocks of the underlying DSMC layer.

Gridless DSMC is currently being employed to simulate collision processes within ultra-cold (� 10 lK
down to nK regime) gas systems. This effort aims to model and evaluate the forced evaporative cooling pro-
cess in novel atomic traps such as long ( J 2 m) magnetic atom guides [44] and dark, all-optical atom traps
[45] to achieve sub-microkelvin temperatures. Preliminary results using gridless DSMC for forced evaporative
cooling have been promising [46].

In addition to simulating neutral gas dynamics, this work represents a larger effort to develop a gridless
methodology (and associated suite of software tools) that includes multi-scale plasma simulations. Initial
effort focused on collisionless plasma simulations and the gridless approach of evaluating boundary integrals
using a tree code (BIT) [29,47,48]. Using the methods from this work, a consistent strategy for including col-
lisions in kinetic plasma simulations will follow. As such, the merger of BIT and gridless DSMC will provide a
self contained tool for collisional plasma simulations.
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